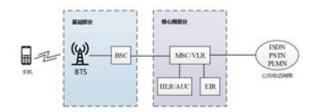


5G 系列 (4): 5G (2G-5G)通信核心网演进


华夏山河雪

本文由 CSDN 博主"华夏山河雪"授权转载。原文链接:

https://blog.csdn.net/baidu 41616132/article/details/95360005

2G 核心网

2G 核心网设备,及 MSC (Mobile Switching Center),移动交换中心。 2G 网络架构图:

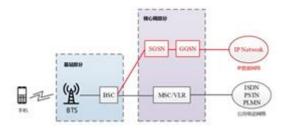
2G 组网中 MSC 就是核心网的最主要设备; HLR、EIR 和用户身份有关,用于鉴权。

MSC/VLR: VLR 是一个功能实体,物理上 VLR 和 MSC 是同一个硬件设备,相当于一个设备实现了两个角色。

HLR/AUC 也是如此, HLR 和 AUC 物理合一。

2.5G 核心网

GPRS 2.5G 介于 2G 和 3G 之间


在2G只能打电话发短信的基础上,有了GPRS,就开始有了数据(上网)业务。

2.5G 相对于 2G 核心网发生大变化, 开始有 PS 核心网。

PS: Packet Switch, 分组交换, 包交换。

红色部分为 PS 交换

SGSN: Serving GPRS Support Node, 服务 GPRS 支持节点

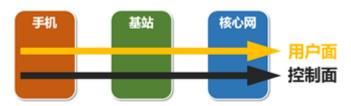
GGSN: Gateway GPRS Support Node, 网关 GPRS 支持节点

SGSN 和 GGSN 都是为了实现 GPRS 数据业务

3G 核心网

3G 基站,由 RNC 和 NodeB 组成。

3G 阶段硬件平台进行彻底变革升级。

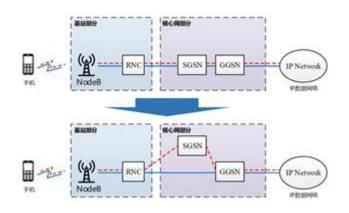

3G 除了硬件变化和网元变化之外,还有两个思路变化:

1、IP化

IP 化是 TCP/IP,以太网,相对于以前 TDM 电路(E1 线中继电路),网线、光纤开始大量投入使用,设备的外部接口和内部通讯,都开始围绕 IP 地址和端口号进行。

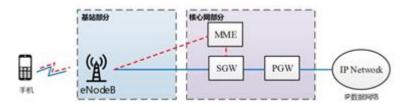
2、分离

分离是网元设备的功能开始细化,不再是一个设备集成多个功能,而是拆分开,各司其事。 分离的第一步是承载和控制分离,在通信系统里面就是两个(平)面,用户面和控制面。



用户面,就是用户的实际业务数据,就是你的语音数据,视频流数据之类的。

而控制面,是为了管理数据走向的信令、命令。


这两个面,在通信设备内部,就相当于两个不同的系统, 2G 时代,用户面和控制面没有明显分开。3G 时代,把两个面进行了分离。

4G 核心网

上一代的 SGSN 变成 MME, GGSN 变成 SGW/PGW, 也就演进成了 4G 核心网

4G LTE 网络架构,相对于 3G,基站里面的 RNC 没有了,为了实现扁平化,功能一部分给了核心网,一部分给了 eNodeB

MME: Mobility Management Entity,移动管理实体

SGW: Serving Gateway, 服务网关

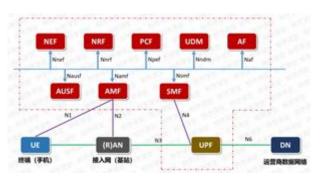
PGW: PDN Gateway, PDN 网关

演进到 4G 核心网之前,硬件平台也提前升级了。

华为的 USN 系列,开始启用 ATCA/ETCA 平台(后来 MME 就用了它),还有 UGW 平台(后面 PGW 和 SGW 用了它,PGW 和 SGW 物理上是一体的)。

在 3G 到 4G 的过程中, IMS 出现了,取代传统 CS(也就是 MSC 那些),提供更强大的多媒体服务(语音、图片短信、视频电话等)。IMS,使用的也主要是 ATCA 平台。

4G 虚拟化时代,虚拟化是指网元功能虚拟化(Network Function Virtualization,NFV),就是硬件上直接采用 HP、IBM 等 IT 厂家的 x86 平台通用服务器(目前以刀片服务器为主,节约空间,也够用)。



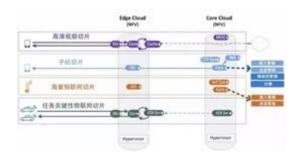
5G 核心网

5G 核心网采用的是 SBA 架构(Service Based Architecture,即基于服务的架构)

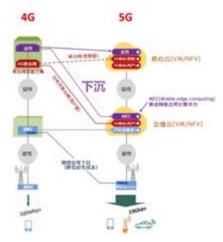
SBA 架构,基于云原生构架设计,借鉴了 IT 领域的"微服务"理念,把原来具有多个功能的整体,分拆为多个具有独自功能的个体。

每个个体,实现自己的微服务,这样的变化,会有一个明显的外部表现,就是网元大量增加了。

红色虚线内为 5G 核心网除了 UPF 之外,都是控制面


5G网络功能	中文名称	类似4G EPC网元
AMF	接入和移动性管理	MME中NAS接入控制功能
SMF	会话管理	MME、SGW-C、PGW-C的会话管理功能
UPF	用户平面功能	SGW-U+PGW-U用户平面功能
UDM	统一数据管理	HSS、SPR等
PCF	策略控制功能	PCRF and PCF
AUSF	认证服务器功能	HSS中鉴权功能
NEF	网络能力开放	SCEF 182
NSSF	网络切片选择功能	5G新增,用于网络切片选择
NRF	网络注册功能	5G新增,类似增强DNS功能

这些网元看上去很多,实际上,硬件都是在虚拟化平台里面虚拟出来的。这样一来,非常容易扩容、缩容,也非常容易升级、割接,相互之间不会造成太大影响(核心网工程师的福音)。


5G 核心网就是模块化、软件化。

5G 核心网之所以要模块化的主要原因是因为"切片",5G 是一个一统的网络,应对所有用户,设计之初,就需要它应对各种需求,既然网络用途不同,那么就需要拆分成模块,灵活组队,才能应对。

例如,在低时延的场景中(例如自动驾驶),核心网的部分功能,就要更靠近用户,放在基站那边,这就是"下沉"。

部分核心网功能, "下沉"到了 MEC, 下沉不仅可以保证"低时延", 更能够节约成本。

临菲信息技术港

临菲信息技术港公众号

临菲学堂