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ABSTRACT Nowadays, the development of efficient communication system is necessary for future
networks. Compressive sensing was proposed as a technique to save storage and energy by compressing
signals using simple linear transformations. Although compressed signals can be perfectly recovered,
the complexity of the reconstruction operation is high. However, there are applications where compressive
signals are processed directly in the compressed domain, with spectrum sensing being an example. Several
works apply classical statistical detectors for extracting information from compressed signals, but an
emerging concept, denoted as compressive learning, uses machine learning algorithms to extract information
from compressed signals and it has promising applications in telecommunications. Compressive learning
is being pointed-out as an important technique for future networks, where detecting patterns from a large
amount of data is a key feature for new applications. In this paper, we investigate the compressive learning
approach applied to spectrum sensing for cognitive radios. We assume that the information about the channel
occupancy is collected by spatially distributed sensors and then concentrated in a gateway. The gateway
compresses the signals and employs orthogonal frequency division multiplexing to transmit the data to the
fusion center, responsible for the final decision about the channel status. We propose a detector based on
neural networks to recover information about the occupancy of the channel from the compressed signal and
compare it with the optimum maximum likelihood detector, assuming perfect and imperfect channel state
information. Results demonstrate that both detectors achieve comparable performance, whereas our proposal
has lower complexity.

INDEX TERMS Artificial intelligence, cognitive radio, compressive learning, compressive sensing, machine
learning, neural network, OFDM, spectrum sensing.

I. INTRODUCTION
Global device connectivity is expected to drastically increase
for the coming years. Estimations predict that, by 2023, over
70% of the global population will have mobile connectivity
and internet of things (IoT) services will be responsible
for half of the global connected devices [1]. This poses an
unprecedented challenge to the development of communi-
cation systems, specially due to stringent requirements for
bandwidth and energy consumption of these devices.

IoT applications based on massive machine type com-
munications (mMTC) [2] scenario for the fifth generation
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of mobile network (5G), are already dealing with a large
amount of information collected from sensors and mobile
devices. These data are employed to identify patterns, predict
systems behaviors, and support decision making processes.
The massive collection of data from the environment
can also be used to increase the capacity of the mobile
network. One interesting application is the dynamic and
opportunistic exploitation of vacant channels as secondary
network. Although the allocation of the RF spectrum below
6 GHz is very congested, it is not yet utilized to its full
potential [3], [4]. To address the spectrum scarcity problem,
the cognitive radio (CR) [5] was proposed and spectrum
sensing (SS) has been identified as a key feature of this
spectrum exploitation approach [6]. In summary, SS is
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employed to identify spectrum opportunities for transmitting
data as secondary users (SUs), while the primary users
(PUs)1 do not occupy their rightful portion of the spectrum.
Therefore, an increase in spectrum efficiency is achieved.
In this context, compressive sensing (CS) can be seen
as a potential candidate for reducing complexity of the
signal sensing task [7]. By performing both sensing and
compression at the same time, CS can sample signals at a
sub-Nyquist rate and perfectly reconstruct them, granted that
certain conditions are satisfied. The compression is carried
out by a simple linear transformation, where the signal is
linearly encoded from a high dimension to a low dimension
by the sensing matrix. However, the process of reconstructing
signals in CS is costly and entails, for instance, solving a
convex optimization problem. This motivated the search for
applications where compressed signals are processed directly
in the compressed domain [8], avoiding the need of signal
reconstruction.

Considering the CR scenario and the SS use case, gateways
can be employed to collect measurements from SUs spread
over an area where PUs operate. We assume that PUs
use listen-before-transmit algorithms to avoid collision.
Moreover, note that each SU measures the energy detected
in a given channel [9], that is, perform SS, and reports
this information to such gateways using a robust physical
layer (PHY) protocol, resulting in neglectable error. To be
more specific, consider that the gateway placed physically
close to SUs, collects measurements from N sensors and
uses a sequence of M < N samples to represent all
spectrum occupancy patterns, that is, which is the active
PU in a given time-window. Therefore, we use CS for
compressing this information, thus reducing the dimension of
measurements and consequently alleviating processing and
storage requirements at the gateway. A common situation
is that the gateway does not have the processing power
or all necessary information (i.e., access to the geolocation
database [10]) to perform the final decision upon the status
of spectrum occupancy. This means that measurements often
need to be transmitted to a fusion center (FC) that has these
processing capabilities and all necessary data for defining the
spectrum occupancy in a given area. Finally, the detection
can be performed without reconstructing the signal, since
only low dimension features must be extracted from the
compressed measurements.

The performance loss incurred when detecting compressed
signals is a well understood effect for model-driven statistic
detectors as, for example, the ones based on maximum
likelihood principle [8], [11], [12]. Despite yielding optimum
performance, they have a high computational complexity,
demand perfect channel state information (CSI), as well as
entries of the sensing matrix used in the CS. As an alternative
to model-driven detectors, data-driven detectors based on
machine learning (ML) algorithms have been gathering an

1PUs or incumbent users, are users that have priority of spectrum access
according to regulatory bodies’ proceedings.

increasing interest from the research community [13]–[21].
So far, conclusions demonstrate that data-driven detectors are
remarkably useful for scenarios where mathematical models
of the system are missing or are difficult to obtain [16], [17].
It is envisioned that ML algorithms and deep learning will be
one of the key enabling technologies for the sixth generation
of mobile network (6G) [22], [23].

More specifically, compressive learning (CL) [24, ch. 10]
has shown promising results in compressed image classifica-
tion. To elaborate, CL leverages ML algorithms and neural
networks (NNs) to perform classification in the compressed
domain, typically in the context of image processing.
Therefore, a natural question arises: how well CL would
perform in the context of communication systems? Beyond
that, it should be considered scenarios for which parameters
of the communication channel are not perfectly known at the
receiver. This is an instance of the aforementioned scenario
where there are no closed-form expressions available for
modeling the system. In addition, computation complexity
should not be neglected, since it plays an important role in
energy efficiency and in the overall cost of the network.

In [25], an end-to-end deep learning approach is employed
to perform image classification in the compressed domain.
In this approach, a fully connected NN, responsible for
performing the linear transformation on the uncompressed
signal, is followed by a convolutional neural network
(CNN), which makes the final inference or classification
of an image. It has been shown by the authors that
CL provides an effective way to reduce complexity and
storage requirements without significantly compromising the
classification accuracy. In [26], the authors propose a data-
driven receiver for molecular communication systems in the
presence of inter-symbol interference (ISI). The modeling
of molecular communication channels are considered to be
very challenging, thus presenting itself as an interesting
opportunity for receivers based on NNs. The NN receiver
was reported to be equivalent, performance-wise, to model-
driven receivers that required perfect CSI. In [27], the authors
apply deep learning for symbol detection in orthogonal
frequency division multiplexing (OFDM) systems. In this
case, parameters about the communication channel are
estimated implicitly by the data-driven receiver. Results
unveiled that this receiver is more robust than conventional
model-driven ones, performing better in scenarios where
fewer training pilots are used, the cyclic prefix (CP) is omitted
and nonlinear clipping noises exists.

In light of these related works, we now lay out the
contributions of this paper and its organization.

A. CONTRIBUTIONS AND PAPER ORGANIZATION
In this paper we make the following contributions:
• We propose a data-driven receiver based on CL for
detecting compressed OFDM data signals embedded in
noise and distorted by the channel;

• An analytical expression is provided for computing the
theoretical performance of the optimum model-driven
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detector in the compressed domain, considering inde-
pendent identically distributed (iid) data signals;

• The performances of both data-driven and model-driven
detectors are compared for practical scenarios as, for
example, when CSI is not perfect;

• Computational complexity of the aforementioned
detectors are provided and validated via numerical
simulations.

The remainder of this paper is organized as follows.
In Section II, an introduction to CS and ML algorithms is
presented, followed by the basics on CL. Next, Section III
details the OFDM system and the estimation scheme under
consideration. Moreover, it also presents the model-driven
and data-driven detectors. For Section V, the specifics about
system model parameters are given and considerations about
the data-driven detector are made. In Section VI, we provide
numerical results to evaluate the performance of both model-
driven and data-driven estimators under several conditions.
In this section, the complexity of such detectors are also
analyzed. Finally, Section VII concludes the paper.

B. NOTATION
Throughout this paper, italicized letters (e.g. x or X ) represent
scalars, boldfaced lowercase letters (e.g. x) represent vectors,
and boldfaced uppercase letters (e.g. X) denote matrices.
The nth entry of the vector x is represented by x (n). The
entry on the ith row and jth column of the matrix X is
denoted by Xi,j. The superscript x(n) denotes the nth instance
of the vector x. The sets of real and complex numbers
are represented by R and C, respectively. The absolute
value of the scalar x ∈ R or the modulo of x ∈ C is
denoted by |x|. The sets of vectors of dimension X with
real and complex entries are respectively represented by
RX and CX . The dimension of the vector x is given by
the operation dim(x). The sets of matrices of dimension
X × Y with real and complex entries are correspondingly
described by RX×Y and CX×Y . The transposition of the
vector x and the matrix X is represented as xT and XT ,
in this order. The `p-norm,2 p ≥ 1, of the vector x is given
by ‖x‖p = (|x (0)|p + |x (1)|p + · · · + |x (n− 1)|p)1/p. The
binomial coefficient is defined as

(n
k

)
= n!/(k!(n− k)!). The

expected value of the random variable z is denoted by E [z].
The real and imaginary parts of z ∈ C are denoted by <(z)
and =(z). The operation diag(x) creates a diagonal matrix
composed by the entries of the vector x. The estimate of a
scalar x, a vector x or a matrix X is represented by x̂, x̂ and
X̂, respectively. Computational complexity is denoted by the
asymptotic operator O(·).

II. PRINCIPLES OF COMPRESSIVE LEARNING
The interest in CS is increasing due to its application in future
mobile communication networks [28]. The amount of sparse
data sources in 6G is expected to grow significantly with the

2The `0-‘‘norm’’ is a special norm for which ‖x‖0 = |x (0)|0+|x (1)|0+
· · · + |x (n− 1)|0, where 00 = 0.

full integration of sensing and communications. Therefore,
CS can reduce the amount of data to be processed in this
scenario.

Detection of the information in the compressed domain
using ML has shown to be an efficient approach. With
this in mind, throughout this section we present principles
involved in the CL concept by building a bridge between
CS and ML algorithms, which are used for detecting the
sensed informationwithout expanding the compressed signal.
In order to achieve this goal, this section presents the
principles of CS and ML in specific subsections, allowing
the proper introduction of CL concepts and paving the way
to present the system model.

A. COMPRESSIVE SENSING
The compressive measurement carried out by CS can be
viewed as a linear encoding of an uncompressed signal
x ∈ RN [24]. Consider the following standard finite-
dimensional CS model,

y = Ax, (1)

where A ∈ RM×N is the sensing matrix and y ∈ RM is the
resulting compressed signal. Therefore,M linear samples are
taken and, for M � N , a dimensionality reduction occurs.
In other words, a signal in a higher dimension,RN , is mapped
by the sensing matrix into a lower dimension RM . Note that
we assume a non-adaptive measurement model so that entries
of A are fixed and independent of x [7], [24], [29].

The model in (1) is defined as an undetermined system of
linear equations, since A has more columns than rows [7],
[30]. It is known, from elementary linear algebra, that such
systems have an infinite number of solutions inRN . However,
signals of interest are often sparse, which means that only a
small portion of its information is relevant. This allows CS
to reconstruct or decode signals in a most efficient way and
avoid the undetermined system limitation [24], [30].

To elaborate on sparse signals, consider an image of N
pixels encoded into a vector u. Because some features like
objects, textures, patterns and hues are more important, this
information is retained whereas other are discarded, reducing
the size of u [7], [30]. Other examples in wireless com-
munications include the sparse channel impulse response,
the sparse detector of index modulation [31], the sparse
utilization of the spectrum in CR applications, and IoT
applications [30], [32]. More specifically, an S-sparse signal
x̃ ∈ RN is defined as [24], [30]

‖x̃‖0 ≤ S, (2)

meaning that x̃ has at most S non-zero entries. For some
scenarios, it is possible to represent the uncompressed signal
x ∈ RN by a given sparse vector. This can be achieved by
applying a basis function, that is 8, to the sparse vector,
so that ‖x−8x̃‖2 is small [30]. Thus,8x̃ retains most of the
relevant information of x. An example is the wavelet basis
function, frequently used in image sensing [7], [29], [30].

VOLUME 9, 2021 122399



P. H. C. de Souza et al.: Compressive Learning in Communication Systems

Different algorithms can be used for signal reconstruction,
for example, orthogonal matching pursuit (OMP), iterative
hard thresholding (IHT), sparse bayesian learning (SBL) and
several others. The detailed description of these algorithms is
out of scope of this paper more details can be obtained in [32],
[33] and in the references therein. One approach is to frame
the signal reconstruction as an optimization problem, namely
the `0 minimization problem [30], [33], given by

minimize ‖x‖0
subject to Ax = y, (3)

for which the optimum value is the so-called sparsest
solution. For the sake of simplicity let henceforth x = x̃, that
is, the uncompressed signal is S-sparse itself. Note that com-
puting the solution of (3) requires that all

(N
S

)
combinations

for the support of x are tested, making (3) generally non-
deterministic polynomial-time hard (NP-hard) [30], [33].
Alternatively, (3) can be recast as a convex optimization [34]
problem as follows

minimize ‖x‖1
subject to Ax = y, (4)

thus making the reconstruction problem tractable, since there
are several fast solvers available [30], [34].

Similar to (3), (4) is referred as the `1 minimization or basis
pursuit, and its solution is also a solution to (3) if certain
conditions are satisfied [33]. These are: i) given y ∈ RM ,
there must be an S-sparse solution, x ∈ RN , for (1) and ii) the
sensingmatrixAmust satisfy the restricted isometry property
(RIP) [24], [30], [33] of order S for δS ∈ (0, 1), such that

(1− δS) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1+ δS) ‖x‖

2
2, (5)

holds for all 6S =
{
x : ‖x‖0 ≤ S

}
, which represents the

set of all S-sparse vectors. For the RIP of order 2S, one
can interpret (5) as a condition in which A approximately
preserves the distances between any pair of S-sparse vectors.
In other words, these conditions enable the unambiguous
recovery of sparse signals [24].

It is critical to mention that if a matrix A satisfies the
RIP, then different CS methods and algorithms can be
proven to have numerical stability and robustness in noisy
measurements [24], [33]. However, construction of such
matrices requires (5) to be verified for all

(N
S

)
combinations

of S non-zero entries of x [29]. Alternatively, random
matrices can be used, for which entries are drawn from
independent standard random variables, hence simplifying
its construction [33]. Besides that, they have other desirable
properties, such as high probability of presenting a small
RIP constant δS [29], [33]. Some examples are the iid
Gaussian matrix, the Bernoulli matrix where P(Ai,j =
±1/
√
M ) = 1/2 or matrices based on other sub-Gaussian

distributions [7], [29]. In this way, the probability of
perfectly recovering S-sparse signals by employing (4) is
high when at least M ≥ CS log (N/S) measurements are
taken, for some constant C that depends on how A is
constructed [7], [29], [33].

B. MACHINE LEARNING AND NEURAL NETWORKS
Generally, ML can be defined as a computer program that
is not explicitly written for solving specialized problems
or tasks. Instead, it learns from available data and its own
mistakes, enabling itself to adapt and solve a broad variety of
problems [13], [15]–[17]. A computer program is said to learn
from experience E with respect to a task T and performance
measure P, if its performance at task T, as measured by P,
improves with experience E [14], [16].
There are classes of tasks where ML algorithms excel and

for which explicit algorithms are impractical or difficult to
obtain. Some examples are classification, regression, pattern
recognition, automatic language translation, data mining
and control [14]–[16]. A classical application example of
ML is image classification. For this classification task T,
the objective is to decide of which class the input image
belongs to. Before producing a decision, the ML algorithm
has to learn image features of all classes, that is, learn
from experience E. This learning process is called training,
which is realized by evaluating decisions produced by the
ML algorithm against certified correct decisions.3 Finally,
a performance measure P is then derived from the training
process and used by the ML algorithm, in order to improve
itself at the task T.

Formally, let

STR =

{(
χ (1), θ (1)

)
, . . . ,

(
χ (NTR), θ (NTR)

)}
, (6)

represents the training set which is composed by NTR
input samples of the feature vectors χ and the labels
or targets θ . Consider a classification example for digital
communication, where χ is a vector of received quadrature
amplitude modulation (QAM) symbols, corrupted by the
communication channel, and θ is the vector of corresponding
transmitted QAM symbols. The ML algorithm output,
denoted as {θ̂

(1)
, . . . , θ̂

(NTR)
}, and labels are evaluated by

a function that quantifies the discrepancy between correct
and ML decisions, that is, P is computed. Some common
metrics are the mean-squared error (MSE) and the cross-
entropy function, where the former is commonly used for
regression tasks and the latter in classification tasks [13], [16].

Over the next section, neural networks, which form a
subclass of ML algorithms [15], are introduced. Notice
that the concepts and notation presented above can be
seen as a general framework for describing supervised
learning ML and NNs. Other instances include: unsupervised
learning, reinforcement learning, among other learning
frameworks [13]–[17]. However, most ML applications
nowadays falls within the supervised learning category,
mainly because its theory is better understood while stable
and efficient algorithms are widely available [17]. In this
paper, we use supervised learning algorithms, which are more
suitable to the detection problem proposed in Section III.

3Correct decisions, also known as ground truth, can be generated by
humans that manually classify images used during the training process.
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1) NEURAL NETWORKS
The recent popularity surge of NNs has given rise to a myriad
of different architectures [35]. Among the most prominent
ones are the multi layer perceptron (MLP), CNN and
recurrent neural network (RNN) architectures [15], [16].
The MLP is the simplest form of NN architecture, but
it is fairly similar to more sophisticated NNs, known as
deep neural networks (DNNs) [13]. The CNN has shown
great potential in solving tasks where spatial correlation
is concerned, as for instance, in image processing, pattern
recognition and channel estimation [16]. It suffers, however,
from a high computational cost [15]. For capturing temporal
dependencies or correlations, the RNN is shown to be more
adequate given its feedback loops, where neurons outputs are
fed back to their inputs [15], [16]. Nevertheless, in this paper
we choose the MLP, given its relatively simple structure and
since the aforementioned spatial and time dependencies are
not part of the detection problem of the CS scenario described
in Section III.

The MLP is formed by L + 1 layers of N`, ` ∈ {1, . . . ,
L+1}, perceptrons or neurons each, usually grouped in three
main layers, namely input, hidden and output layers. Fig. 1
illustrates this architecture.

FIGURE 1. MLP architecture. The MLP is formed by L+ 1 layers of N`
perceptrons or neurons, usually grouped in three main layers: input
(` = 0), hidden (` ∈ {1, . . . , L+ 1}) and output (` = L+ 1) layers. Layers are
fully connected, meaning that each neuron of the `th layer is connected
to all neurons of the (`+ 1)th layer.

Layers are fully connected, meaning that each neuron of
the `th layer is connected to allN`−1 neurons of the preceding
layer and similarly to all N`+1 neurons of the next layer.
Mathematically, the output of neuron n, n ∈ {1, . . . ,N`},
in layer ` is given by

χ` (n) = fn,`
(
zn,`

)
, with zn,` = wT

n,`χ`−1 + bn,`, (7)

where χ` ∈ RN` is the `th layer output and χ0 is the input
feature vector that is fed to the MLP. The connections are
represented by weights wn,` ∈ RN`−1 for which wn,` (k) is
the weight between the kth neuron of layer `− 1 and the nth
neuron of layer `. The parameters b` ∈ RN` are bias terms
for layer ` and fn,` is the non-linear activation function of the
nth neuron of layer `. Some examples of activation functions
are presented in Table 1 [13], [16].

TABLE 1. Examples of activation functions. Note that fn,` represents the
non-linear activation function of the nth neuron from layer `.

Note that the neuron itself is a simple processing unit
whereby a linear operation is carried out, resulting in zn,`,
followed by a non-linear transformation by fn,`. However,
in general, the power of NNs lies in the fact that a
network of these neurons is able to devise a learning method
that implicitly learns the data structure and its underlying
distribution [15], [16]. For the sake of simplicity, hereafter
MLP and NN refer to the exact same architecture.

NNs primary objective is to learn a given task as, for
instance, detection of QAM symbols. More specifically,
NNs should be able to learn the desired input-output
relation by optimizing their own parameters [16]. To achieve
this goal, the training of a NN includes the tuning of
learnable parameters, which are weights and bias terms
of the architecture in Fig. 1. First, let the weight vectors,
wn,`, be rearranged in a matrix W` ∈ RN`−1×N` such
that W` =

[
w1,`, . . . ,wN`,`

]
. Moreover, considering a

supervised learning framework, let us define (6) as the
training set, where here the actual NN output is χ (nt)L+1 = θ̂

(nt),
for all nt ∈ {1, . . . ,NTR}, and χ

(nt)
0 = χ (nt). Thus, we have

θ̂
(nt)
(W,b) , ∀ nt ∈ {1, . . . ,NTR}, (8)

whereinW = {W`}
L+1
`=1 and b = {b`}L+1`=1 represent the sets of

all parameters to be optimized. This shows that the actual NN
output depends on these parameters, which justify why they
must be accounted for by the NN when training. This lead
us to another important aspect of training: minimizing the
loss function. In short, to learn, NNs minimize a function that
models the discrepancy between actual NN outputs, θ̂

(nt), and
desired ones θ (nt). This discrepancy, also known as training
error or loss, can be written as follows [16]

L (W,b) =
1
NTR

NTR∑
nt=1

L
(
θ (nt), θ̂

(nt)
(W,b)

)
, (9)

for which L (·, ·) is the referred loss function that ultimately
yields a performance criterion [17]. Therefore, the training
process can be mathematically described by the following
optimization problem

minimize L (W,b)

subject to W` ∈ RN`−1 , ∀ ` ∈ {1, . . . ,L + 1}

b` ∈ RN` , ∀ ` ∈ {1, . . . ,L + 1}. (10)
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However, it is important to mention that solving (10) is
not trivial given that its objective function is not convex
with respect to the optimization variables [16], [36]. This
is a consequence of the multiple layers of non-linearity dis-
played by NNs architectures. Nevertheless, unlike classical
optimization, the goal of training is not to find the global
minimum of the loss L (W,b). Instead, a trade-off must
be achieved between a sufficiently low local minimum and
a suitable generalization capacity for the NN [16]. This is
further discussed in Section V. As a consequence of this fact
and of the increasing availability of computational power,
several efficient algorithms for solving (10) were proposed
in the literature (see [15], [16] and references therein).

These algorithms are mainly first-order methods based
on the gradient descent [13], [15], [16]. By definition,
the gradient descent points in the direction of maximum
decrease of the loss function, which can be used for
minimizing it. This requires computation of the training loss
derivatives with respect to all learnable parameters, that is,

∇WL (W,b) =
1
NTR

NTR∑
nt=1

∇WL
(
θ (nt), θ̂

(nt)
(W,b)

)
; (11)

∇bL (W,b) =
1
NTR

NTR∑
nt=1

∇bL
(
θ (nt), θ̂

(nt)
(W,b)

)
. (12)

However, computing the derivatives in (11) and (12)
entails high computational costs. Fortunately, this can be
done efficiently via the backpropagation algorithm, where the
multivariable calculus chain rule is leveraged to propagate
the derivatives backwards throughout the network [15], [16].
These derivatives are then used to update the learnable
parameters in the following manner:

W =W− α∇WL (W,b) ; b = b− α∇bL (W,b) , (13)

where α controls by how much, or how fast, the loss function
is reduced; it is called the learning rate. This update process
is repeated until the loss function is reduced to an acceptable
value, which effectively solves (10).

CS exploits sparsity properties of signals to recover
them from a low dimension space without any loss of
information, if certain conditions are met. For some sensing
applications, however, signal reconstruction is not necessary.
An example is SS, for which the task is to identify underlying
patterns in the signal rather than its full reconstruction.
With that in mind, CL has recently emerged as a solution
for extracting relevant information of compressed signals,
without the computationally expensive reconstruction stage.
In CL, the signal reconstruction is substituted by a classifier
based onML algorithms. It was demonstrated by [24, ch. 10],
that a support vector machine (SVM) classifier in a lower
dimension has approximately the same accuracy of a SVM
classifier in the uncompressed higher dimension. This is a
consequence of the relation between the RIP condition in
(5) and the Johnson–Lindenstrauss property (JLP), which
is important in several ML applications (see [24, ch. 10]

for details). Over the next sections, these consequences are
explored in the context of communications systems.

III. SYSTEM MODEL
Suppose that C PUs are distributed over a given area and
N SUs perform SS to identify vacant spectrum channels,
each SU generating a unique sample. The measurements
taken by all SUs are transmitted to a gateway, via robust
PHY protocol that can recover such measurements free of
errors, and compressed using CS. TheseM < N compressed
measurements are in turn transmitted to the FC using an
OFDM system. This is necessary, since it is assumed that
gateways do not have the processing power and all necessary
information to perform the final decision on the channel
occupancy. It is also important to mention that all samples
are transmitted to the FC, instead of just indexes i of classes
encoded in QAM symbols, for example. This is done to
improve robustness, since each sample is transmitted by an
orthogonal subcarrier. Moreover, note that A is chosen using
the CS technique so as to spare resources at the gateway,
such as storage and processing time. Thus, it is expected that
codewords given by Ax(i) are not optimal. Fig. 2 depicts the
system model for this specific scenario.

Hence, the baseband representation of the received com-
pressed measurements or data signal, after the CP removal,
can be written as

r = h~ y(i) + n, (14)

where h ∈ CM is the channel impulse response, y(i) ∈ CM ,
i ∈ {1, . . . ,C}, is the ith class4 transmitted data signal and
n ∈ CM is the iid complex additive white Gaussian noise
(AWGN) with n ∼ N

(
0, σ 2IM

)
. Note that y(i) is the OFDM

symbol in the time domain after being operated by the inverse
discrete Fourier transform (IDFT) and~ denotes the circular
convolution. We assume that the CP length is larger than the
maximum delay spread. Therefore, on the receiver side, after
performing the discrete Fourier transform (DFT), we obtain
the received data signal in the frequency domain as follows

rF = Fr = HyF(i) + nF, (15)

in which F ∈ CM×M is the Fourier matrix, H ∈ CM×M

is a diagonal matrix with the channel frequency response,
whereas yF(i) ∈ RM is the M -point DFT of y(i) and nF is
the complex AWGN in the frequency domain.

For channel estimation, it is assumed that pilot symbols are
transmitted in the first OFDM block followed by a block of
data symbols. Combined, they form a frame [37]. Thus, Np
pilot symbols are uniformly distributed across subcarriers so
that cp (pL1), p ∈ {0, . . . ,Np − 1}, represents the pth pilot
symbol given an integer L1 = (M − 1)/Np. Furthermore,
we also assume that channel coefficients at pilot frequencies
are estimated by the minimum mean square error (MMSE)

4Remember that PUs are assumed to employ the listen-before-transmit
protocol. This means that each PU waits for its turn to transmit, making
reasonable to assign a class for each specific pattern of spectral occupancy
generated by C PUs.

122402 VOLUME 9, 2021



P. H. C. de Souza et al.: Compressive Learning in Communication Systems

FIGURE 2. System model. Each SU performs SS and generate an unique sample with the aim of
detecting which one of the C PUs is using the spectrum in a given time-window. All these
samples are transmitted to a gateway and compressed. Note that the gateway is capable of
perfectly recovering the measurements. Compressed measurements are then transmitted to the
FC using an OFDM system.

estimator. Consequently, for Np < M , an interpolation
of these coefficients are used to estimate the channel at
intermediary subcarriers. In this paper, the estimated channel
coefficient at subcarrier index k , k ∈ {pL1, . . . , (p+ 1)L1},
is given by

ĥ (k) = ĥ
(
cp
)
+

[
ĥ
(
cp+1

)
− ĥ

(
cp
)]
(k − pL1)

L1
. (16)

IV. COMPRESSIVE DETECTION
Frequently, it is of interest to be able to detect and classify
a received data signal based on its noisy version. Moreover,
such classification task can be performed on the compressed
data signal, saving resources such as storage and energy.
In what follows, a compressive detection problem with C
classes is presented, each class corresponding, for instance,
to a specific pattern of spectral occupancy, as presented
in Fig. 2. For tackling this task, first a variation of the
well-knownmaximum likelihood detector (MLD) is analyzed
followed then by a proposed detector based on the CL
concept.

Besides the performance comparison in terms of mis-
classification or correct classification rates, it is essential
also to consider the computational complexity or cost of
such detectors. For this purpose, over the next subsections,
a complexity analysis based on flop count is presented for
each detector.

A. MAXIMUM LIKELIHOOD DETECTOR
Assuming that the data signal yF(i), i ∈ {1, . . . ,C}, composes
a set of classes and that classes occurrences are equiprobable,

the MLD decides in favor of the index î that satisfies [8], [11]

î = argmin
i
‖rF − diag(ĥ)Ax(i)‖22, (17)

wherein rF ∈ CM is given by (15), A is a known M × N
sensing matrix as defined in Section II-A, x(i) ∈ RN are
the known uncompressed vectors, and diag(ĥ) ∈ CM×M is a
diagonal matrix with estimated channel coefficients obtained
from (16). Here we assume that the sensing matrix is an
orthoprojector, that is, AAT

= IM.
The detection performance of the MLD under non-

ideal conditions may differ significantly from the detection
performance under optimum conditions. In face of these
drawbacks, the adoption of data-driven models are showing
promising results [13]–[17]. In the next section, a proposed
detector based on NNs is presented, in which CL is leveraged
to promote detection of compressed signals.

B. NEURAL NETWORK DETECTOR
Let the neural network detector (NND) input be given by
the concatenation of the real and imaginary parts of the
received compressed OFDM data signal, that is, χ =

[<(rF)T =(rF)T ]T . Thus, for χ ∈ R2M the NND decides in
favor of the index î that satisfies

î = argmax
i

θ̂i (W,b) , ∀ i ∈ {1, . . . ,C}, (18)

where θ̂ ∈ RC , given by (8), is the NND output with the
estimated probabilities of occurrence for each class. In other
words, (18) can be seen as a multiclassification problem with
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C classes, where θ̂i (
∑

i θ̂i = 1) is the output of the ith softmax
function given in Table 1.

C. COMPUTATIONAL COMPLEXITY
Before presenting the complexity evaluation, notice that:
(i) in this work a flop is defined as onemultiplication followed
by one addition; (ii) differences in flops counts smaller or
equal than a factor of two are not considered; (iii) for the
sake of simplicity, calculations with complex numbers have
the same cost of that with real numbers. It is important to
highlight that flop count is an inherently imprecisemethod for
estimating computational complexity, but it gives estimates
which are sufficient in many cases [34, appx. C.1.1, p. 662].
Hence, the approximations carried out in this work do not
hamper the overall precision of the method.

1) MAXIMUM LIKELIHOOD DETECTOR COMPLEXITY
Although the MLD yields optimum performance in terms of
class detection error, it has a high computational complexity
that is not feasible in most practical applications. The
cost of the MLD in terms of flop count is approximately
O(C(MN+1)), but usuallyMN � 1, so that it can be further
approximated to O(CMN ). Therefore, the cost increases
significantly for high dimensional signals consisting of
several classes.

2) NEURAL NETWORK DETECTOR COMPLEXITY
For the NND, it is assumed that all learnable parameters
W and b are defined in the offline training stage described
in Section II-B. Therefore, the computed computational
complexity of the NND considers only the online detec-
tion stage, more commonly denoted as forward-pass stage
[18], [23]. This term refers to the direction of data flow across
the NN, meaning the data goes from input to output whereas
in training the flow is reversed.

With this in mind, the NND forward-pass complexity is
shown to be approximately O(dim(χ )N1 +

∑L
`=2 N`−1N` +

NLC), where dim(χ ) denotes the size of the input feature
vector. If the number of neurons is the same across all layers
except the last one, that is, N`−1 = N` = Nη, for all
` ∈ {2, . . . ,L}, then the total cost simplifies to O((L −
1)N 2

η + Nη(dim(χ ) + C)); knowing that dim(χ ) � C ,
further reduces it to O((L − 1)N 2

η + dim(χ )Nη). Finally,
we assume that modern hardware have fast and efficient ways
of computing non-linear activation functions, thus making
their cost relatively small. Consequently, this cost is not
factored into the overall NND complexity.

Note that the choice of the NND parameters, for example,
the number of neurons Nη, might not only affect its detection
performance but has a direct impact on the computational
cost. This fact creates design complications [36] when
dealing with NNs that must be addressed. Over the next
section, specifications of the proposed NND design and of
system parameters are given, followed by a brief description

of the computer simulation used for generating numerical
results.

V. NND DESIGN AND PARAMETERIZATION
The output layer of the proposed NND architecture consists
of C softmax neurons, which is determined by the number
of classes. It is important to mention that although the
output layer has a definite number of neurons, the same is
not true for hidden layers. Similarly, the learning rate and
other parameters are not fixed according to other system
parameters; combined they form the NN hyperparameters.
All hyperparamenters of interest for the proposed NND
are described in Table 2, otherwise they are configured to
their typical settings (see [16, §III-C, p. 16]). Note that
hyperparameters were chosen based on a heuristic approach,
that is, through a trial and error process. Other more
sophisticated methods, such as grid or random search, were
found to be prohibitively complex in terms of computations
needed and are not used in this work.

TABLE 2. Hyperparamenters of interest for the proposed NND.

To adjust hyperparameters accordingly, one must seek
a necessary low training error while also achieving a low
generalization error for the target NN [16]. In summary,
the generalization error is measured by evaluating the
NN detection performance over a different data set than
of the training set, namely test set. This is important
because, in general, ML algorithms are useful only if they
perform well on previously unseen data. However, using
the test set for adjusting hyperparameters can give rise to
problems [16]. Therefore, an estimation of the generalization
error must be obtained with the so-called validation set so
that hyperparameters can be properly adjusted. Basically,
an optimum balance between underfitting and overfitting is
desirable, where the former is when the NN has limited
capacity and cannot achieve a low training error and the
latter represents the case where the gap between training and
validation error is big, that is, the generalization error is high.

Fig. 3 shows an example of the training error as well
of the validation error for the proposed NND as a function
of training epochs. Error or loss values are generated after
several iterations of the training algorithm, each epoch
representing how many times the entire training set is used
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FIGURE 3. Training and validation errors for the proposed NND as a
function of training epochs. The training set consists of 104 samples and
the validation set of 2500 samples. Five iterations of cross-validation are
applied, whereby the data set is partitioned in training and validation set
for each iteration using the K -fold [38] approach, where K = 5. Here,
the learning rate is specifically adjusted to 10−5 for low noise and
1.4× 10−5 for high noise. This guarantees similar training losses for both
noise levels so that an analysis of the validation loss can be done
independently. It was verified that higher learning rates perform better
which justifies the value shown in Table 2. Moreover, the uncompressed
OFDM data signal has 1024 samples and the number of classes is C = 3.
Finally, it was also observed that similar results are obtained for
compressed data signals.

by the algorithm. Losses are quantified by the cross-entropy
loss, defined as

L
(
θ , θ̂

)
= −

C∑
i=1

θi log
(
θ̂i

)
+ (1− θi) log

(
1− θ̂i

)
, (19)

which is a standard metric for evaluating classifiers. More-
over, note in Fig. 3 that two curves of validation loss are
presented. One of them is associated with a low noise level
training scenario and the other to a higher noise level. Other
system parameters are defined according to the descriptions
already provided in this section.

We conclude from Fig. 3 that the NND does not underfit
regardless of the noise level. In contrast, the validation loss
kept increasing for higher noise levels, even though an exten-
sive search for combinations of hyperparameters adjustments
were conducted as described before. Nevertheless, this is
expected to some degree, since the validation error provides
an estimation of the generalization error, which ultimately
represents the detection error that is present in all receivers
under noise. It will be demonstrated in the next section that
such levels of generalization error are not prohibitively high.

The library Scikit-learn [39], [40] is employed for mod-
eling the proposed NND and integrating it to the simulation
environment5 based on Python. Numerical results generated
by this simulation are presented in the next section.

VI. NUMERICAL RESULTS AND DISCUSSION
We begin this section by defining all relevant system
parameters and then evaluate the detection performance of
theMLD defined by (17) and of the proposed NND described
by (18). Afterwards, an analysis of computational complexity
for these detectors are presented and a conclusion is drawn,
taking into account both metrics.

5Code of the simulation can be found at https://github.com/PedroSouza-
INATEL/compressive-learning-SISO.git

A. SYSTEM PARAMETERS
For the system model under analysis in this paper, the fol-
lowing parameters are adopted: (i) the SUs’ measurements,
x(i), are represented by P(x(i)(n) = ±1) = 1/2, for all n ∈
{1, . . . ,N } and i ∈ {1, . . . ,C}, in which each sample is drawn
from iid Bernoulli random distribution. Note that this data
signal are not sparse since a perfect reconstruction is not the
main objective, instead a compressive classification problem
is studied. Moreover, observe that {±1} Bernoulli levels can
be seen as indicators of spectral occupancy in a given area
that the nth SU covers. (ii) Entries of the orthoprojector
sensing matrix A are drawn from a standard iid Gaussian
distribution and normalized by 1/

√
N . (iii) A frequency

selective complex Gaussian channel with unitary second
moment is considered. The channel is assumed to be constant
over the duration of an OFDM frame and its delay profile
is configured with an exponential decay. Consequently,
channel path delays are defined so that 90% coherence
band would correspond to approximately one subcarrier
bandwidth. Table 3 presents the parameters of the channel
model used in this paper. Note that entries of the channel
impulse response, h, are drawn from a complex Gaussian
random process at each transmission of an OFDM frame.

TABLE 3. Channel model parameters, where P = N/1024,
T = 1

τmax
∑

k τ
(
k
)
, and g

(
i
)
∼ CN (0,1).

Detectors’ performances are expressed by the estimated
probability of error (Pe) metric, which quantifies missclas-
sification rates. This is obtained by averaging detection
errors over multiple Monte Carlo experiments, each one
representing: (i) the transmission of an OFDM data signal
with a class index, i ∈ {1, . . . ,C}, drawn from a uniform
distribution; (ii) the generation of channel coefficients for the
kth subcarrier and their subsequent estimation by the MMSE
estimator; (iii) linear interpolation of the estimated channel
coefficients; (iv) the generation of complex AWGN samples
present in the FC; (v) and the final decision for the class with
higher probability of being transmitted. We assume that a
single random sensing matrix A is generated for the initial
transmission and fixed for all subsequent transmissions.
In addition, the NND random number generator is also fixed
so that results are reproducible across different simulation
executions. The random number generator affects weight and
bias initialization as well as other NN procedures that require
randomization. Therefore, it can be seen as yet another
parameter to adjust and, as such, no undue performance gains
can be obtained from adjusting it.

For training the NND, signal-to-noise ratio (SNR)
values are drawn from a uniform distribution U ∼

[min(SNR),max(SNR)]. In other words, the NND is trained
with random levels of noise for each training sample. This
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allows for a more generic training set up that is independent
of the SNR. Recall also that a supervised learning framework
is adopted for the proposed NND. This means that in training
the NND uses known data signals as targets θ . Additionally,
it was observed that a considerable gain in performance
is achieved for the NND, if the real and imaginary parts
of estimated channel coefficients are concatenated into
its input. Thus, the NND input is now given by χ =

[<(yF)T =(yF)T <(ĥ)T =(ĥ)T ]T . Other parameters of the
NND are configured as described in Section V.

B. DETECTION PERFORMANCE
1) VALIDATION OF NUMERICAL RESULTS
It is important to note that numerical results presented in
this work agrees with theoretic predictions, at least for the
simple case where fading is flat, channel estimation is perfect
and the MLD is employed. More specifically, consider Pe
values computed by the following expression [41, p. 265];
[42, p. 575]:

Pe =
1
√
2π

∫
∞

−∞

∫
∞

0

{
1−

[
1−

1
2
erfc

(
y
√
2

)]C−1}

× exp
[
−
1
2

(
y−

√
2γ
)2]

f (γ ) dγ dy, (20)

where,

f (γ ) =
2N
M0

exp
(
−
2Nγ
M0

)
, γ ≥ 0, (21)

and for which the system average SNR, E [γ ] = 0, is defined
as

0 = E
[
‖h‖22

] d2min

σ 2 , for

dmin = min
i,j
‖x(i) − x(j)‖2, ∀ i, j ∈ {1, . . . ,C}, i 6= j, (22)

wherein E
[
‖h‖22

]
is the fading second moment and dmin

denote the minimum separation [11] among uncompressed
data signals x(i). In this paper, unless stated, it is assumed that
the SNR of the MMSE estimator has the same level of 0.
We stress that (20) can be applied to the system model

studied in this work, despite predicting the detection perfor-
mance of M -ary orthogonal frequency shift keying (FSK)
modulations over fading channels. This can be done by first
realizing that data signals x(i) are asymptotically orthogonal
to each other, since they are generated by an iid process.
In other words, there is no correlation between data signals
of different classes as N →∞, or for a sufficiently large N .
Moreover, it should be also considered that distances between
them are compacted, due to the compression of transmitted
data signals. Therefore, a factor ofM/N 6 [8], [11] is weighted
in the average SNR from (21) to account for that. This factor
is henceforward referred as the compression rate, given its

6This factor deviates from the given value when N is exceedingly small,
which is a consequence of the fact that random sensing matrices are
asymptotically orthornormal.

similarity to the code rate: a parameter that is crucial for
defining the performance of error-correcting codes in the
context of channel coding theory [42, ch. 8].

FIGURE 4. MLD detection performance for a range of SNR values and
different compression rates. Here, N = 1024 samples and C = 32.

Fig. 4 presents the MLD detection performance for a
range of SNR values and different compression rates, where
N = 1024 samples and C = 32. Firstly, it can be
observed in Fig. 4 that estimated values adhere well with
theoretical predictions, thus validating the simulation model.
Furthermore, note that the relative performance loss between
compression rates are indeed in the order of M/N . For
instance, the Pe for uncompressed data signals, that is, for
M/N = 1, is Pe ∼= 10−2 at 27 dB, whereas for M/N = 0.5
the same value for Pe is only reached at 30 dB. This can be
verified for all points in Fig. 4. Finally, it can also be observed
that these conclusions remain the same regardless of other
configurations for the number of samples N and of classes C ,
granted that values for N are not prohibitively small.

2) DETECTION PERFORMANCE WITH IMPERFECT CSI
For the case illustrated in Fig. 4, it is assumed that
channel estimation is perfect, that is, perfect CSI. However,
this is not expected in practice, since the interpolation in
(16) is commonly used for OFDM systems, consequently
introducing errors to the estimates. With that in view, Fig. 5
shows the detection performance of the MLD as well of the
NND under perfect and imperfect CSI, as a function of SNR
and multiple compression rates. Also, different training set
sizes, NTR, are evaluated for the NND. Furthermore, note that
the number of pilot symbols are Np = 17 pilots forM/N = 1
and Np = 5 for M/N = 0.25.
From Fig. 5 we conclude that the MLD detection

performance under imperfect CSI is worse than for the ideal
case, that is, under perfect CSI.7 The observed performance
loss is approximately of 3 dB for uncompressed (M/N = 1)
data signals and of ≈2 dB or less for compressed

7It is a well-known fact that for OFDM systems a frequency-selective
wide-band channel is divided into multiple frequency-flat narrow-band
channels. Thus it follows that the performance for selective fading is the
same as for the flat fading, when perfect CSI and an exponential decay for
the channel power delay profile are considered (see Fig. 4).
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FIGURE 5. MLD and NND detection performances under perfect and imperfect CSI as a function of SNR, multiple compression rates and
training set sizes. Here, N = 1024 samples, C = 32 and the number of pilot symbols are Np = 17 (M/N = 1) and Np = 5 (M/N = 0.25)
pilots. The ideal curves are the MLD detection performance under perfect CSI for each compression rate, respectively.

(M/N = 0.25) signals. This was expected since a very
limited number of pilot symbols are used for estimation,
which represents an interesting scenario to study given that
MLDs are notably sensible to estimation errors. Besides that,
added to the fact that resources, for instance, bandwidth and
energy, are not always widely available in practice, it is also
desirable to maximize throughput by reducing the number of
transmitted pilot symbols.

As illustrated in Fig. 5, the NND detection performance
under imperfect CSI; considering a training set size of NTR =

105 samples, is close to that achieved by the MLD under
the same conditions. To elaborate, while the NND detection
performance for uncompressed (M/N = 1) signals is of the
order of ≈1 dB worse than that of the MLD, for compressed
(M/N = 0.25) signals their performances are practically the
same. However, for a training set size of NTR = 106 samples,
the NND outperforms the MLD in all analyzed scenarios.
That way, Fig. 5 shows that learning in the compressive
domain is applicable in the context studied in this work.
Furthermore, as can be also verified in Fig. 5, the NND
detection performance under perfect CSI does not differ
considerably in relation to the detection performance with
imperfect CSI, regardless of the training set size considered.
Therefore, receivers based on NNs can potentially benefit
from robustness against estimation errors.

3) DETECTION PERFORMANCE WITH LOW-POWER PILOT
SYMBOLS
Another interesting scenario to evaluate is when the SNR
of the MMSE estimator is fixed relative to the system
SNR (0). This is equivalent to say that pilot symbols
powers are now fixed and do not depend on data signal

power levels. More specifically, this represents a sce-
nario where energy efficiency is prioritized over detec-
tion performance, given that low-power pilot symbols are
transmitted.

Simulation results for this scenario are provided in Fig. 6,
they are the MLD and NND detection performances under
imperfect CSI as a function of the system SNR, multiple
compression rates and different training set sizes; the SNR
of the MMSE estimator is fixed to 0 and 6 dB. Fig. 6
shows that the MLD detection performance is heavily
penalized in an energy efficient setting. Notice how this
performance is unsatisfactory even for high values of SNR,
for which it diverges considerably from the ideal case. For any
combination of parameters analyzed in Fig. 6, the proposed
NND is equivalent or outperforms theMLD for values of0 >
20 dB. Therefore, it can be asserted that the overall detection
performance of the NND is superior, because probabilities of
error for 0 ≤ 20 are nevertheless prohibitive for both NND
and MLD. This renders useless any comparison between
them in this SNR range. As a last comment, it was observed
for the scenario studied in Fig. 6, that defining the NND input
as described in Subsection IV-B would guarantee the best
performance possible. This implies that the NND does not
make any use of the estimated channel coefficients to obtain
the results in Fig. 6. Thus, by not using pilot symbols to assist
signal detection, the proposed NND not only achieves a better
detection performance but it is also more resource efficient
than the MLD.

In summary, the proposed NND based on CL presented
itself as a good alternative to thewell-establishedMLD. In the
next subsection it will be demonstrated that the proposed
NND also presents low computational complexity.
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FIGURE 6. MLD and NND performances under imperfect CSI for the scenario where the MMSE estimator SNR is fixed to 0 dB ((a)
and (c)) and 6 dB ((b) and (d)). These performances are a function of the system SNR, multiple compression rates and different
training set sizes. The remaining parameters are configured as described in Fig. 5.

C. NUMERICAL COMPUTATIONAL COMPLEXITY
Subsection IV-C presented the computational complexity of
the MLD and NND, respectively, in terms of flop counts.
As a means to validate these calculations, the Python module
timeit.py [43] is employed here. This module provides
measurements of execution times (Et ) for specific code lines,
which, in this paper, means the code that implements (17)
and the forward-pass stage of (18). Several execution times
of these code snippets are computed and then averaged.
Note, however, that we are interested in the asymptotic rate
of change of the complexity as a function of some system
variable, for example, N , rather than specific execution
times. Therefore, the focus here is not to estimate absolute
lower bounds for execution times but a general trend for
computational complexity, as in flop counts.

1) MLD COMPUTATIONAL COMPLEXITY
Fig. 7 presents the estimated cost or complexity of the MLD,
as a function of the number of samples N for the OFDM
data signal. In addition, these results are also obtained for

FIGURE 7. Estimated cost or complexity for the MLD, as a function of the
number of samples N of the OFDM data signal. Results for different
compression rates, M/N , and number of classes C are also provided.
Note that the MLD cost given by flop count is O(CMN) and that execution
times are in milliseconds.

different compression rates, M/N , and number of classes C .
As expected, it can be verified in Fig. 7 that the estimated
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FIGURE 8. Estimated computational complexity of the NND. In (a) the estimated cost is given in terms of the input feature vector
size, dim(χ), with different values for the numbers of neurons, Nη , and layers L. For (b) the estimated cost is computed as a function
of Nη , for some values of dim(χ) and L. Note that the NND cost given by flop count is O((L− 1)N2

η + dim(x)Nη) and that execution
times are in milliseconds.

MLDcost increases quadratically with the number of samples
N , since O(CMN ) = O(λCN 2), where λ = M/N .
Furthermore, Fig. 7 shows that the estimated cost increases
faster for higher compression rates. This is consistent with
what is predicted by flop counts, sinceM is larger for higher
compression rates, which in turn increases the cost given by
O(CMN ). A similar effect is verified if the number of classes
C is increased.

Bear in mind that the MLD complexity could be reduced
if the operation Ax(i), for all i ∈ {1, . . . ,C}, in (17),
is executed once before the initial transmission and reused
afterwards. This is feasible because we assume A is fixed
for all transmissions, otherwise the complexity calculation
remains unaltered. However, the storage capabilities neces-
sary to fulfill this task could become prohibitive in practice,
especially for signals with several classes. Therefore, here we
assume that such operation is executed by the MLD for each
detection performed at the FC.

2) NND COMPUTATIONAL COMPLEXITY
The estimated computational complexity of the NND is
presented in Figs. 8 (a) and (b). In Fig. 8 (a) the estimated
cost is given in terms of the input feature vector size, that is,
dim(χ ), and for different numbers of neurons, Nη, and layers
L. For Fig. 8 (b), the estimated cost is computed as a function
of Nη, for some values of dim(x) and L.
An initial analysis of Fig. 8 (a) shows that the NND

estimated cost does not vary significantly with dim(χ ),
regardless of Nη and L. In other words, increasing the
number of samples N for the OFDM data signal and,
consequently, dim(χ ), does not cause any change in cost.
This contrasts to what is observed for the MLD, where
costs increase quadratically with N . Nevertheless, this was
expected because from the flop count for the NND, it can be
concluded that the cost is governed mainly by the number
of neurons Nη and layers L. The justification for this lies in
the fact that higher order terms in O(·) contribute the most
for overall cost. Therefore, it is indeed to be expected that

an increase in Nη or L results in greater costs, as is depicted
in Figs. 8 (a) and (b). Finally, it is also important to mention
that, as predicted by flop count, no significant changes are
observed in the NND estimated cost when increasing the
number of classes C .
Another interesting contrast between the proposed NND

and the MLD, is that the former does not require any
knowledge ofA entries for detecting compressed data signals.
Recall that the NND learns signals patterns in the offline
training stage. That way, the sensing matrix is learned
implicitly by the NND, via compressed signals that constitute
the training set. This means that resources are spared since
information about entries of A are not transmitted to the
receiver.

From results presented in this section, the following major
conclusions can be drawn: (i) the proposed NND shows that
learning in the compressive domain is also applicable to
detect compressed OFDM data signals embedded in noise
and affected by channel impairments; (ii) the proposed NND
detection performance can be better to that achieved by the
MLD for scenarios with imperfect CSI; (iii) the proposed
NND is robust against imperfect CSI; (iv) the proposed
NND also outperforms the MLD in the energy efficient
scenario, where pilot symbols are transmitted with low
power; (v) the computational complexity of the proposed
NND is considerably lower when compared with the MLD
complexity, since it remains largely unchanged with the
increase of samples, N , and the number of classes C .

VII. CONCLUSION
In this work, an emerging concept denoted by CL is leveraged
for detecting compressed OFDM data signals. These signals
are composed by measurements of the spectrum collected by
SUs that perform SS. More specifically, SS is used to detect
vacant spectrum channels, thereby providing opportunistic
access to the unused spectrum. These measurements are
first transmitted to a gateway, which has limited processing
power. This means that the final decision upon the status
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of the spectrum (vacant or busy) needs to be done at a
resourceful unit, denoted as FC. Therefore, measurements are
then required to be transmitted to the FC via an OFDM data
frame and CS is used as a means to alleviate the resources
usage at the gateway, by compressing the measurements
before being processed and transmitted.

At the FC, signal detection is performed efficiently,
that is, without reconstruction of the uncompressed signal.
Considering this, we proposed a data-driven receiver based
on the NN architecture. It was shown that the data-driven
detector, NND, has comparable detection performance to the
model-driven detector, MLD, for practical scenarios, even
outperforming it in some cases.Moreover, the proposed NND
presents a lower computational complexity, and it is more
robust to channel estimation errors. This means that benefits
with the NND are two-folded, since its complexity is lower
and less training pilots can be used without penalties in
detection performance.

For future research, multiple-input multiple-output
(MIMO) systems and data signals with a greater number of
classes should be considered. In addition, it would be also
interesting to assess the NND performance for training sets
composed of samples from real channel measurements.
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