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ABSTRACT This paper demonstrates the use of deep learning and time series data generated from user
equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs
between beams that belong to the same or different BSs. We propose the use of long short-term memory
(LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of
the beam measurements to study the performance of the prediction used for the proactive beam handoff.
Simulations show that while UE positions can improve the prediction performance, it is only up to a certain
point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction
accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the
time-defined trajectories.

INDEX TERMS Beamforming, deep learning, handoff, predictive, radio resource management, transfer
learning.

I. INTRODUCTION

Since the introduction of the fifth generation of wireless
networks (5G), user equipment (UEs) have become asso-
ciated with serving beams instead of serving base stations.
For stationary UEs, beams can improve the signal strength
as measured by these UEs in contrast to a conventional BS
with no beamforming. Beamforming in 5G allows the UE
reference symbols to benefit from the beamforming gain—
an opportunity the reference symbols missed in prior gen-
erations of wireless networks. However, several challenges
emerge with mobility. These challenges can be summarized
in either blockage or handoff interruption (or both). A proac-
tive approach to beam assignment to moving UEs can help
reduce the impact of these challenges and improve the relia-
bility in these networks [1].

Handoffs are radio resource management (RRM) mobil-
ity procedures used to transfer the UE session from one
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base station (BS) to the other. In 5G, the concept of beam
switching (or handoff) is introduced where a UE session is
served by a different beam instead of its current one based
on the radio measurements of the reported beams from UE.
Beam switching can happen within the same BS (intra-BS) or
between two different BSs (inter-BS). While it is straightfor-
ward for the UE to switch to a different beam in an intra-BS
beam switching scenario, a random access procedure is often
needed for the inter-BS beam switching scenario. In this case,
the UE detects themost performance-optimal beam and sends
back a physical random access mapped to the identifier of
the beam. This procedure is not instantaneous since the UE
has to wait for the random access procedure to take place
before it can proceed [2]. During this time, further radio
degradation in the current serving beam may happen and
the UE may indicate a radio link failure (RLF) and perform
a re-establishment procedure [3]. This procedure leads to
longer service interruption as the UE now has to perform a
random access procedure. It becomes an opportunity for an
intelligent data-driven approach to proactively prepare the
beam for every UE in transition. This is in order to avoid
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FIGURE 1. Next-generation base station uses an edge node for storage
(solid) and compute (dashed) to proactively assign beams to UEs using
radio measurements.

interruption in the flow of its data as a result of this beam
switching.

With the development of technology beyond 5G, the
introduction of artificial intelligence and machine learn-
ing (AI/ML) is inevitable: the data-driven approaches to
solve problems that are mathematically intractable using
AI/ML have witnessed established roots to industry stan-
dards. Specifically, there are study items on enhancements for
data collection for 5G [4] and AI/ML air interface [5]. Deep
learning, a specialized AI/ML technique, has shown viable
reusability and reduction in computation cycles through
‘‘transfer learning’’ [6]. Transfer learning is a deep learning
approach that uses a pre-trained model for one task as a start-
ing point for another that performs a similar task, which can
also be re-trained. It has been used with measurable success,
as we also validate in this paper. Deep learning methods are a
specialized form ofmachine learning that uses neural network
architectures. Owed to their non-linear activation functions,
these learning methods can learn arbitrarily complex rela-
tionships between inputs and outputs and have a certain level
of robustness against noise. Also, due to the multiple layers
of neural networks (or depth) and number of nodes in each
layer (or width), they can autonomously extract learning fea-
tures making the task of learning more time-efficient. Deep
learning can perform time series classification. In this type of
classification, training data is time-indexed and the learning
must abide to the temporal relationship between observations
in the data.

The use of deep learning in performing predictive hand-
off or beam switching serves other purposes with regards
to the evolution towards the sixth generation of wireless
networks (6G): on the one hand, it makes a solid use case
for multi-access edge computing, where both data storage
and compute power are brought near to the base station [7].
On the other hand, successful predictions can eliminate any
potential disruption in the flow of data to the UE [8], [9], thus
improving on the throughput and latency. These twomeasures
remain quintessential performance measures as wireless net-
works evolve towards 6G. Fig. 1 shows how an edge compute
and storage node can benefit the next-generation base stations
in storing data and performing AI/ML-driven computations
related to beam prediction and proactive beam handoffs.

A. RELATED WORK
A single user moving in a trajectory of two base stations
(BSs) was studied in [1] and [10]. In [1], the objective was

to minimize blocking probability using a gated recurrent
unit (GRU) deep learner. We study multiple users moving
in different trajectories with more than two BSs. Further,
GRUs have the potential to overfit, a problem that can be
avoided with models with more complexity, such as the long
short-term memory deep neural network, which we propose.
In [10], the assumption on the trajectory is that it is a fixed
turning scene with a predetermined finite angle and radius.
In our case, the trajectories are not predetermined and are
based on two-dimensional streets with the motion of UEs
being stochastic in both the direction and speed. Further, sev-
eral papers successfully used these long short-term memory
deep neural networks in areas not related to wireless networks
such as [11], where different data-driven approaches were
applied to proactively determine the useful life of Lithium-ion
batteries and thus avoid probable damages.

The industry standards [3], [12] for mobility procedures
can be divided as higher- and lower-layer mobility. Higher-
layer mobility requires the Radio Resource Configuration
(RRC) protocol to initiate handover procedure. The config-
uration to the UE can be provided earlier (i.e., conditional
handover) or on time (i.e., baseline handover and dual active
protocol stack handover) [3]. The handover in RRC layer is
triggered if the beam received signal power of non-serving BS
is higher than that of the beam of a serving BS by a certain
offset and for a given duration [3]. In lower-layer mobil-
ity (LLM), the handover decision is performed by medium
access control (MAC) layer of the air interface protocol
stack based on the received beam measurements. MAC layer
uses certain signaling information known as the ‘‘control
elements,’’ which are sent to the UE to trigger the serving
beam change. UEs can be configured to report the beams of
both serving BS and non-serving BS, and thus a beam change
can be performed in both intra-BS or inter-BS scenarios. The
configuration of the LLM mobility procedure is provided to
theUE during the RRCprocedure in advance as in conditional
handover. In inter-BS mobility the decision to trigger LLM
is made by the serving BS and conditions for this decision
have not been defined in the standards. Thus, this provides
room for novelty in terms of how this procedure can be
implemented and we propose the predictive capability using
prior measurements.

An alternative to beam switching was proposed in [8]
through use of deep learning to perform band switching.
In essence, channels of different frequency bands transmitted
off the same BS (e.g., millimeter wave (mmWave) and sub-
6 GHz) possess certain correlation characteristics that can
be exploited to predict whether a UE switching from one
frequency band to another would be successful. The use of
UE coordinates was suggested as a means to improve the
prediction performance. While we also propose the use of
UE reported coordinates, we limit our dependence on the
coordinates through the use of time series since time series
captures the best serving beam of a given UE in its trajectory
as a function of time. This implicitly captures the channel
impact due to the location of the UE.
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We note that in this paper, it is the 6G evolution of the base
station to include compute capabilities that we exploit, and
not any specific radio measurement changes, though these
may prove helpful once the standards are finalized.

B. CONTRIBUTIONS
This paper makes the following specific contributions:

1) Demonstrate the importance of per-UE deep learners in
BSs as opposed to one single learner per BS.

2) Show that knowledge of UE coordinates can improve
prediction performance but up to a certain point in
history.

II. SYSTEM MODEL
We consider a system composed of a multiple base stations
(BS) with multiple transmit (i.e., downlink) and a single
receive (i.e., uplink) antenna. Let there beMT transmit anten-
nas per BS. UEs are independently scattered in the service
areas of these BSs and are in motion defined by a trajectory.
Let the set B be defined as the set of BSs that cover the entire
service area.

The received signal of the i-th UE on the b-th beam from
the serving BS for a given subcarrier is therefore given by:

yi = h∗
b,if

⋆
i,bxi +

∑
j̸=i

h∗
b,jf

⋆
i,bxj + ni, i ∈ {1, 2, . . . , u}

(1)

where xi is the transmitted signal of the i-th UE normalized
such that Pxi := E|xi|2 = 1 and hb,i ∈ CM is the channel
vector connecting the unique beam b to the i-th UE. We
assume that the channel state information represented by
these channel vectors hb,· are perfectly known at the serving
BS and UE, which is a common practice for transmissions
at the mmWave frequency range where time division duplex
(TDD) mode of operation is used and channel reciprocity is
exploited. Further, we define these beams in a way that make
them uniquely identifiable across all BSs. Let there be a total
of u > 0 UEs in the system. The power-optimal beamforming
vector f⋆i,b is selected from a quantized analog beamforming
codebook F with a finite cardinality:

f⋆i,b = arg max
f∈F

|h∗
b,if|

2. (2)

The last two terms in (1) correspond to the inter-beam
interference and additive white noise, which is sampled from
a zero-mean Gaussian probability density function and a
variance of σ 2. The received signal power can be computed
as Pyi = |h∗

b,if
⋆
i,b|

2, which when measured on the reference
symbols on the synchronization channels per beam, is known
as the ‘‘SS-RSRP’’ [13].

A. FADING
Since the UEs are in motion, they are expected to experience
fading. In the presence of fading, we assume that the channel
observes two types of fading: 1) large scale: shadow fading

(i.e., log-Normal) and 2) small scale: Doppler fading depend-
ing on the movement speed of the UEs. The impact of the
fading is captured in the channel state information.

B. BEAM SWITCHING
As mentioned in Section I, the change of the serving beam
(i.e., the beam switching (or handoff) procedure) can be
implemented at several layers in the air interface protocol
stack. However, as in (1), the power-optimal beam is com-
puted through a search over a codebook while the channel
is assumed constant (i.e., within its coherence time). With
beamforming, the channel coherence time increases due to
directional reception [14]. The beam coherence time for a
moving UE is approximately given by [8] and [15]:

tcoherence,i ≈
Di

vi sinαi

2

2
, (3)

where Di is the Euclidean distance of the i-th UE from the
serving BS and 2 is the beamwidth of the serving beam mea-
sured in radians, vi is the speed of theUE on the trajectory, and
αi is the angle between the direction of travel and the direction
of the BS. UEs are expected to have different coherence times
since they have different locations and distances from their
respective serving BSs.

III. PROBLEM FORMULATION
The industry standards [12] provide a UE-specific identi-
fier known as the BS ‘‘radio network temporary identifier’’
(C-RNTI). The C-RNTI is assigned to the UE during its
random access procedure by the serving BS as shown in
Fig. 2. It remains with the UE as long as it is served by that
BS. This temporary identifier makes building a deep learning
model per BS-UE pair possible. Further, standards [13] also
provide identifiers per beam per BS. However, as there are
multiple BSs, we propose one way to make the beam identi-
fier unique across the network through a binary shift left and
add operation, with the shift amount being equal to log2 |B|.
This motivation allows us to formulate the problem of

proactively selecting the optimal beam at the radio frame
number n and the i-th UE:

b⋆
i [n+ 1] := arg max

b∈B, ℓ∈[0,|L|−1]
M̂b(n; i, ℓ) (4)

where M̂b(·) is the deep learning estimate of the likelihood
of the predicted beam to be for the optimal b-th beam using
ℓ lookback beam measurements assigned to the i-th user.
The lookback values selected from the ordered set L. This
formulation allows us to treat both intra- and inter-BS beam
handoff alike.

From (4), we are training a multi-class classifier based on
time series to predict the optimal beam for (n + 1), which
means the beam for the next radio frame.While the offset term
can be set to more than 1, we choose 1 which corresponds
to the next radio frame. The main reason of predicting the
optimal beam for the next radio frame only is that the beam
switching (of the UE) to the target beam has to be completed
within 1 ms for LLM according to the standards [16].
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FIGURE 2. Assignment of the C-RNTI as part of the random access
procedure defined in the standards.

IV. DEEP LEARNING FOR TIME SERIES
In this section we explain how time series data yt can be
used in deep learning. Particularly, we study the multi-variate
time series case (i.e., where yt is a function of many learning
features measured at time t for a given UE).

A. TIME SERIES
Time series yt is a sequence of data points indexed in discrete
time t . This time can be in steps as small as milliseconds
depending on the network configurations, which is the case
when data points are collected from radio measurements. The
v-th learning feature (v ∈ {0, 1, . . . ,N − 1}) is denoted in a
column vector format as: x(v) := [x(v)t ]M−1

t=0 ∈ RM , where x(v)t
is the value of the v-th learning feature measured at the time
instance t for the UE being served during this time instance.
In the context of our problem, yt is the power-optimal

beam identifier as measured at the radio frame t for a UE
moving along an arbitrary trajectory. It is used to construct
a column vector y := [yt ]

M−1
t=0 ∈ RM . All x(v) and y

are joined on the parameter t to construct the time-indexed
dataset. At any given t and for a given UE, this dataset is a
design matrix of joined [x(v) | y]. For all UEs, a similar matrix
can be constructed from this by stacking these design matrix
instances based on time. This stacked matrix is referred to
as D ∈ R

Mu×n, where u > 0 is the number of UEs in the
network as defined in (1). Given that the dataset contains a
supervisory signal, y, we may reconstruct this multi-variate
time series problem as a supervised learning problem with
the supervisory signal being a time-shifted version of y.
We discuss this as well as the impact of feature engineering
further in this section.

Horizon is the number of time shifts in the future that we
would like to predict. The horizon is a function of the learning
features extending back in time, while it looks forward in
time. In (4), our horizon is set to 1 as motivated earlier.

Embedding is transformation of a single dimension of
temporal sequence to a multi-dimension space. By setting
up a sequence of delays, we can treat each past value as
an additional spatial dimension in the input space. If we
look back in history by δ > 0 time steps, then we have an
embedding dimension of δ.

B. FEATURE ENGINEERING
There are three types of feature engineering that we consider:
1) shifting and lagging, 2) differencing, and 3) scaling.

1) SHIFTING AND LAGGING
To improve the predictability of a time series, a time shift of
the dataset D is applied block-wise with past and future shift
values. That is, the dataset becomes [Dt−k | . . . |Dt | . . . |Dt+ℓ],
where k > 0 is the lag and ℓ > 0 is the lead time shift. This
causes the dataset to have an additional total of ℓ + k column
vectors, which represent the embedding dimension as defined
earlier. This time shift operation also creates undefined values
which are often dropped from the dataset causing a reduction
in the number of rows by ℓ + k .

2) DIFFERENCING
A stationary time series is a series the statistics of which
do not depend on the time at which the series is observed.
Differencing helps reduce any trend in the time series, and
therefore introduces stationarity and improves predictability.
Let us define the j-th order difference d (j)(t) := xt − xt−j, j ∈
{1, 2, 3, . . . M} and apply it column-wise on D. This leads to
a newmatrix [1t−k | . . . |0| . . . |1t+ℓ], with ℓ+k+1 columns.
Combined with the shifting and lagging step, the dataset D
thus has a total of 2(ℓ + k + 1) column vectors, each of
the dimension Mu for a shape D ∈ R(M−(ℓ+k))×2(ℓ+k+1).
We set N := 2(ℓ + k + 1) and M ′

:= Mu − (ℓ + k) for
simplification and thus D ∈ RM ′

×N after the differencing
operation.

3) SCALING
Scaling the learning features is done through the transfor-
mation function ϕ : D 7→ D̃, where the scaling of values
between [0, 1] is essential to avoid driving the neural network
activation functions deep into saturation. We do not scale the
supervisory signal vector.

C. SUPERVISED LEARNING AND PREDICTION
While the dataset D contains a supervisory signal y which
is the time series at present time t , predictions are interested
in future values of y. To address this discrepancy, we define
a lookahead L ∈ {0, 1, 2, . . .} where the supervisory signal
becomes yL := [yt+L]

M ′
−1

t=0 ∈ RM ′

. This way, the supervised
learning problem is established with respect to a lookahead
value of the supervisory signal yL .

Combined with feature engineering, we can construct the
time-series supervised learnable dataset D := [D̃ | yL].
We use this definition of D as our learnable dataset moving
forward, which is later reshaped into a tensor, to train the deep
learning model as we see later in this section.

Prediction: If we denote the true supervisory signal at time
t as yL , then the predicted signal is denoted as ŷL . Since the
supervisory signal yL is categorical, the prediction problem
becomes a minimization of the categorical cross-entropy of
the probability density p(·) of ŷL , which is defined as:

L(yL , ŷL) := −

M ′
−1∑

i=0

∑
b∈F

1[[yL]i = b] · log2 p([ŷL]i = b).

(5)
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D. DEEP LEARNING
Deep learning is a specific type of machine learning that uses
several layers of connected computational elements called
‘‘perceptrons,’’ which are threshold functions with weights
and are the basic unit of a neural network. These units
can either be 1) connected where information flows forward
between layers (i.e., from the input layer to the intermediate
layer to to the output layer) or 2) recurrent where information
can also flow through feedback connections. As any machine
learning algorithm, deep learning also aims at minimizing a
cost function. This is done through computing the gradient
with respect to the weights of this function.

Tomodel temporal relationships between the various learn-
ing features, recurrent neural networks (RNNs) connect each
time step with the previous ones through feedback connec-
tions. However, RNNs suffer the vanishing (and exploding)
gradient problems, whereby the gradient of the error func-
tion becomes vanishingly small (or explosively large) in the
long-term, preventing the backpropagation algorithm from
updating the weights. This in turns prevents the RNNs from
learning. Another option is the use of LSTM that we propose.
Here, the computed weights can be ‘‘forgotten’’ thus keeping
gradients unchanged. A simplified solution is known as the
gated recurrent unit (GRU). GRUs simplify the forget gate
operation through combining it with the input gate. This
effectively allows for faster training of smaller datasets at a
compromise of learning longer time sequences.

Often mentioned alongside RNNs are convolutional neural
networks (CNNs). CNNs are useful in analyzing datasets
that have grid patterns (e.g., classifying images or learning
hierarchies in data) [17]. In comparison to RNNs (and by
inheritence LSTMs), CNNs do not readily have temporal
constructs. Instead, CNNs have a property of spatial shift
invariance, which essentially means that small location trans-
lations do not impact the performance of CNNs. This is due to
the pooling layer which effectively summarizes (i.e., through
averaging or selection of extrema) the learning features. In the
case of a set of pre-defined trajectories, CNNs may not
offer any additional performance improvement, since these
trajectories are splines in two-dimensional space and are—
by definition—summaries.

1) COST FUNCTIONS
Are generally nonconvex functions of the true and predicted
label vectors. Despite using functions that are seemingly
convex (e.g., cross-entropy), the use of hidden layers with
non-linear activation functions can lead to several ‘‘equal’’
global minima making the function nonconvex. As a result,
an optimizer is needed to minimize the cost function.

2) BACKPROPAGATION
In order for the information to flow between layers, the
backpropagation algorithm computes the gradient of the cost
function with respect to the weights of a perceptron one layer
at a time. Because of the nonconvexity of the loss function,

a gradient-based optimizer is utilized to drive the prediction
error to the lowest value possible.

3) TENSORS
Tensors are generalizations of two-dimensional matrixes to
a larger dimension space. While the input data D̃ is a
two-dimensional time-indexed matrix, it has to be further
reshaped to a tensor so that the third dimension is the time
index.1

4) ACTIVATION FUNCTIONS
An activation function is a non-linear function2 that defines
the output of a perceptron from a given set of inputs and
weights. Relevant ones in our paper are: 1) for LSTM, we use
hyperbolic tangent as an activation for the memory cell state
and sigmoid for recurrent input, forget, and output gates 2) for
FCDNN, we use the rectified linear unit dense layers. The
output layer of the model is a dense layer with a softmax
activation function that calculates a probability for every
possible class, which represents the unique beam identifier
as motivated in (4).

5) INITIALIZATION
For both LSTM and FCDNN we initialize the bias to zeros
and the weights according to the Glorot algorithm, such that
the variance of the activations are the same across every layer.
This helps prevent or minimize gradient saturation [19]. It an
extensively used practice to optimize nonconvex functions
though convergence may not be guaranteed [17].

6) OPTIMIZER
To find the cost optimal weights, we use the adaptive
moments (Adam) optimizer [20]. Adam has benefits of being
computationally efficient, uses the second moment to accel-
erate the descent, with little memory being required. Besides
the learning rate which dictates the descent rate, other impor-
tant parameters are 1) the batch size, which is the number of
training samples in one optimizer step and 2) the number of
epochs, which is the number of times the complete dataset is
visited as part of the training phase.

7) HYPERPARAMETER TUNING
Hyperparameters are deep neural network settings that are
used to control its behavior. To find the loss optimizing
hyperparameter settings, we use grid search over a set of
parameters related to the depth and width of the FCDNN.
This is done over data samples that the deep neural network
does not observe as part of its training, referred to as the
‘‘validation’’ data.

1The order of this dimension does not have to be the third. For example,
with Keras [18], the time index is the first dimension, while the other two are
simply a design matrix for each time index.

2An exception is the linear activation function, which is used when the
output data type is continuous.
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FIGURE 3. Architecture of the deep learner comprising fully connected deep neural networks, dropout layer, and LSTMs.

8) TRANSFER LEARNING
Transfer learning [6] is the process where a deep learner
trained on one dataset is used 1) as a starting point for a
model that performs a similar task or 2) to make inferences
from a different and relevant dataset. Thus, transfer learning is
more time-efficient than training from scratch. This becomes
particularly useful in delay-sensitive RRM applications in
wireless networks such as mobility.

E. LAYERS
Here, we focus on the ones that are relevant to our paper:
1) fully connected deep neural network (FCDNN), 2) long
short-term memory (LSTM), and 3) dropout layers.

Fully connected deep neural networks are made of sev-
eral layers of artificial neural networks to approximate a
function [17]. The first layer is the ‘‘input layer’’ while the last
layer is referred to as the ‘‘output layer.’’ The hidden layers
are all the layers between the input and the output layers. In a
FCDNN, the number of nodes in each hidden layer is its width
and the number of the hidden layers is its depth. FCDNNs do
not factor in time relationships within the input data.

Long short-term memory are special types of RNNs.
RNNs are a family of neural networks that can pro-
cess sequential data and thus are suitable for time-indexed
datasets. LSTMs comprise multiple elements: 1) memory cell
state, which is generally common in RNNs 2) forget gate
and 3) input gate [21]. The memory cell states simply record
information. The input gate is used to update the memory
cell state. The forget gate can learn to reset the state of the
memory cell when the stored information is no longer needed
(i.e., invalidation of the memory cell). If we denote vectors of
the candidate memory cell (i.e., new information) as c̃t , the
forget gate as ft , the input gate as it , then we can represent the
impact of the forget and input gate on the memory cell output
as follows: ct := ct−1 ⊙ ft + c̃t ⊙ it .
Dropout layer randomly sets a fraction of the input units

to zero at each training step, known as the rate. This effec-
tively creates an ensemble of learners, which helps prevent
overfitting (i.e., memorization of training data and failure of
generalization). The dropout layers exist in both the LSTM
and FCDNN layers.

Output layer selects the class of the highest likelihood.
Since our deep learner is effectively a multi-class classifier,
the softmax activation function in the output layer converts
the values from the to a vector of real values the sum of which
is equal to 1.

Architecture of the deep learner with the relevant hyper-
parameters per building block is shown in Fig. 3. A high-
level reasoning for this architecture is explained as follows:
we start with an LSTM to learn long occurring patterns,
then we use a fully connected deep neural network to extract
additional learning features from these occurring patterns.
We drop some inputs at random to minimize overfitting and
then we use another LSTM to learn any long term patterns
from these additional features. These learnings are fed to the
output layer, which uses the softmax activation function. The
output of this function is a predicted class with the highest
likelihood as motivated earlier.

F. TRAINING AND VALIDATION SPLIT
Given that D is a time-indexed dataset, a random split
between a training and a validation set often performed in
supervised learning is not feasible. This is because the impli-
cation of time and its impact on the values of each learning
feature becomes overlooked. Instead, a split that has two
types of constraints that have to be fulfilled: 1) no randomness
and 2) split must abide by the time boundaries of a radio
frame. To achieve these two constraints, the pivoting time
index t⋆ at which the data is split is computed for a training
data size rtraining as follows:

t⋆ := ⌊⌊rtrainingm′
⌋/N frame

slot ⌋N frame
slot , (6)

where the discrete interval [0, t⋆ − 1] is the time indexes
belonging to the training data while the interval [t⋆, n − 1]
is for the validation data. Here N frame

slot is the number of time
slots in a radio frame.

G. RUN-TIME COMPLEXITY
Let us denote the LSTM input gate dimension as I and the
memory cell state dimension as C . Further, let us denote
the depth of the FCDNN as d and the width of it as w.
Then, the run-time complexity of the architecture outlined
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in Fig. 3 as affected by the change in these values is in
O(IC + C2) + O(wd) [22], [23], where the first term is the
run-time complexity of the LSTM and the second term is the
run-time complexity of the FCDNN, both as a function of
their respective dimensions.

V. BEAM HANDOFF ALGORITHMS
A. LEGACY
This follows the industry standards, where the network can
configure UEs to measure and report the reference symbol
for both serving and neighboring BS beams. For RRC-based
mobility, the network can configures events for mobility deci-
sions such that if the SS-RSRP of the neighboring BS is above
the serving BS by a certain offset and time-to-trigger duration
(i.e., A3 event) [3], the UE sends a measurement report to the
network via the RRC protocol.

LLM on the other hand relies on beam-centric measure-
ments where the network can configure UEs to periodically
report serving and non-serving BS beams periodically [24].

The minimum report interval for RRC-based mobility is
120 ms [3] whereas the periodicity of the LLM beam report-
ing can be as low as 10 ms [12].

Because of the use of events and periodic reports, this
algorithm does not benefit from any supervised learning and
is essentially a reactive (as opposed to a proactive) approach.

B. PROPOSED
In our proposed algorithm, we use both LLM and RRC-based
mobility procedures. The LLM procedure is adopted dur-
ing the training for data collection where UEs report the
SS-RSRP value per beam for several beams. There are other
quantities construct the dataset and are either reported by the
UE or computed at the BS as shown in Table 1.
Objective: The objectives tuple O are the radio measure-

ments that the handoff aims at optimizing. This could be the
beam reference symbol received power or any other target as
reported per UE for all time indexes.

Trajectory: We define a trajectory of a given UE as a
time-indexed tuple for the i-th UE Ti(t) := (t, i, φi(t), bi(t))
collected over the period of movement of this UE in the
association area of the network. Here, the elements of this
tuple are the time index, C-RNTI, direction (φ) of the
i-th UE, and beam identifier. Optionally a time-indexed
tuple can contain the longitude and latitude coordinates
(t, i, φi(t), xi(t), yi(t), bi(t)). The LSTM layers in the deep
learner have an objective of learning these trajectories and the
performance optimal beam as it changes over time over that
trajectory. The union of the trajectory and objective tuples at
a given time index t and for the i-th UE is essentially a row
in the dataset D. We can formally define D before the feature
engineering steps as D := [X | y] = [(Ti(t) ∪Oi(t))ui=1]t .
Algorithm outline: Algorithm 1 is outlined as follows:

1) Collect UE LLM measurements and compute features
as shown in Table 1 to construct D. This contains

the optimization objective measurement and helps con-
struct trajectories of the UEs in motion.

2) Train a deep learner and use its predictions of
objective-optimal beams for all UEs following similar
trajectories as learned by the deep learner: If the pre-
dicted next optimal beam of the UE is different than
the current serving beam, trigger a handover.

3) If a UE hands off to a wrong beam or BS (i.e., as a result
of a poor deep learner prediction), which could lead to
a handover failure as UEmay experience a weak signal,
invoke fallback: UE to initiate recovery procedures
(e.g., RRC reestablishment or beam failure recovery).
This effectively pauses the LLM measurements.

4) Perform transfer learning using new data (or experi-
ence) obtained from either good or bad predictions.

5) Resume LLM measurements.
6) This outline repeats as long as the algorithm is enabled.

Due to the predictions made by this algorithm, the UEs
do not need to periodically report their radio measure-
ments, which helps 1) conserve UE battery 2) reduce heat
that is a major contributor to shot noise at mmWave fre-
quencies and 3) reduce control signaling overhead. The
algorithm is also robust against failure due to the fall-
back mechanism: If the prediction performance of the net-
work is poor, the UE can either indicate beam failure or a
RLF. Then, the UE and initiates an RRC re-establishment
or beam failure recovery procedure to connect to the net-
work. The proactive handoff for this UE is stopped until
the re-establishment of the connection between UE and the
network.

Training approaches:We propose twomethods for model
training: 1) Distributed and 2) Centralized.

1) DISTRIBUTED
In this case a deep learner is created per BS-UE pair. Thus,
the UE identifier is necessary and transfer learning cannot
be applied since the C-RNTI can be reassigned to a different
UE [3]. This allows us to come up with two approaches of the
distributed model:
Proposed with UE coordinates: In this scheme we allow

the UEs to report its coordinates to the serving BS, which
uses the coordinates as learning features to predict the optimal
beam for these UEs.
Proposed without UE coordinates: UEs do not report their

coordinates (xi, yi) to their serving BS.
In the distributed case, the number of deep learners

required is u|B|. This is because one deep learner is assigned
per BS-UE pair.

2) CENTRALIZED
In this case a deep learner is created per BS and the BS
does not require any knowledge about the UE identifier or
positions. Instead, it ‘‘crowdsources’’ knowledge regardless
of which UE reports it. This clearly reduces the number of
deep learners required to |B|.
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Algorithm 1 Proactive Optimal Beam Handoff
Input: Optimization objective from O,

training-validation ratio from (6).
Output: Objective-optimal beam assignment to the

i-th UE for the next radio frame for all
i ∈ {1, 2, . . . , u}.

1 Loop
2 if moving UEs are in LLM then
3 Collect reports and computations to construct

D from the features shown in Table 1.
4 Train a deep learner using first (6) samples

and assess prediction performance:
5 if validation performance is acceptable then
6 Use deep learner predictions of optimal

beams based on the trajectories as
learned by the deep learner.

7 Proactively handoff UEs to their predicted
optimal beams if the predicted next best
beam is different than the current serving
beam.

8 If UEs report un-degraded measurements
(at least), set prediction to good.

9 else
10 Set prediction to bad.
11 end
12 end
13 if prediction is bad then
14 Fallback: UE initiates recovery procedure

(e.g., RRC re-establishment or beam failure
recovery).

15 Instruct UEs to pause LLM measurements.
16 end
17 Retrain deep learner through transfer learning (if

applicable) using recent experience from
fallback.

18 Instruct UEs to resume LLM measurements.
19 EndLoop

VI. SIMULATION
A. SETUP
The dataset used for the simulation is generated from a system
level simulator based on the Manhattan grid as visualized in
Fig. 4. This grid consists of two streets the width (and height)
of each is 200 m (and 100 m). These distances are influenced
by the empirical measurements from [25]. The radio propa-
gation in this scenario provides street canyon like effects and
sharp transitions between line of sight (LOS) and non-LOS.
We usemicro BSs each of which has an antenna height of 5m.
UEs are independently and uniformly distributed in the grid
and move in one of four directions at random (uniform) and
at an average speed of 100 km/h. We use full buffer traffic
model (i.e., infinite data availability) to keep the system at
maximum load. To add an element of complexity, the speed of
the UEs changes every 100 m with probability of 0.2. We set

rtraining to 0.6 and run the simulation for a total of 50 seconds
or 5,000 radio frames. Further details of the simulation setup
can be found in Table 2.

The architecture of the deep learner is depicted in Fig. 3.
The deep learner has depth of 8 and width of 16. It is trained
with 192 epochs and a batch size of 64, each with a rectified
linear unit activation function. The data training-validation
split is 60%-40%. A dropout rate of 0.2 is used for the
dropout layer. We also set the random generator seed to 0 for
reproducibility.

We run three flavors of the proposed algorithm: 1) dis-
tributed with UE coordinates, 2) distributed without UE
coordinates, and 3) centralized. The performance of these
is benchmarked against a perfect predictor. The objective of
interest is the SS-RSRP. That is, we proactively instruct UEs
to handoff to received power-optimal beams as predicted by
the next radio frame. For all three flavors (or approaches),
we choose a lookback ℓ from L := {0, 1, . . . , 10}. Cen-
tralized approach ignores two features from: 1) C-RNTIs
(which are used in the distributed approach) and 2) the UE
coordinates.

B. RESULTS
We start this subsection with a few important definitions
related to the performance of the proactive beam handoff
algorithm. These are the accuracy and the relative accuracy.

1) AVERAGE ACCURACY
The average accuracy for a multi-class classification can be
challenged as a suitable measure since the beam idenitifiers
may not be balanced in their count. However, what the UE is
interested in a proactive handoff is whether the predicted and
true beam identifier are identical. Thus, the accuracy (Ā) is
defined as an average of identical values of the classes:

Ā(y, ŷ) :=
1
V

V−1∑
i=0

1
[
[y]i = [ŷ]i

]
, (7)

where V is the dimension of the beam identifier vector,
collected over the validation time period (6) for all UEs. The
average accuracy is a significant measure for radio access
performance since a mispredicted beam results in wrong
handoff decision and thus can degrade quality of experience
and lead to mobility failure or increase the duration of service
interruption [26]. Also, the RLF rate due to beam handoff
failure is simply 1 − Ā.

2) ZERO-ONE SCORE
To assess the added value of the UE position to the prediction
performance, we define a vector of loss-win scores known as
the zero-one score (α ∈ {0, 1}V ) as:

α(ŝ, ˆsbase; ε) := 1
[
(ŝ − ˆsbase) > ε1

]
, (8)

where the V -dimensional column vectors are for a certain
performance measure (e.g., average accuracy), ε is the cutoff
threshold, and 1[·] is overridden as the indicator vector.
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TABLE 1. Dataset features.

FIGURE 4. Manhattan grid. Base stations are uniformly distributed at each road intersection. The received signal
power per beam [dBm] is displayed for all beam candidates.

FIGURE 5. Accuracy and loss for both the training and validation data for
a given BS-UE pair and ℓ = 7 lookback.

For the results, we begin with the loss (5) as shown in
Fig. 5. As the number of epochs increase we observe a
decrease in the loss and increase in the accuracy which shows
that the deep learner is indeed ‘‘learning’’ from D. This
demonstrates that proactive beamhandoff using deep learning
is possible.

In Fig. 6, we show the average accuracy of all legacy,
distributed, and centralized approaches over several lookback
values. The performance of the distributed approach to proac-
tive handoff is superior to the centralized one. With ℓ = 0,
the distributed case with no coordinates is equivalent to the
legacy approach outlined in Section V-A. We discuss why
the performance of the distributed approach is superior to the
centralized one in the next subsection.

Fig. 7 shows the zero-one score with parameter ε =

0.03. Here, the baseline is the performance of the dis-
tributed approach without UE coordinates. We observe that

FIGURE 6. The average accuracy of the proactive beam handoff approach
vs. lookback.

the distributed approach using the UE coordinates does not
always outperform baseline. Particularly, we observe that
the deep learner does not perform well with short lookback
sequences, which is expected as LSTM generally penalizes
shorter sequences. However, when the number of lookbacks
is between 2 and 7, then the distributed approach with UE
coordinates outperforms the baseline. We also notice that
for larger ℓ, knowledge of UE coordinates does not bring
any additional insight to the deep learner. Further details are
discussed in the next subsection.

To understand the extent of the performance of the dis-
tributed approach using the UE coordinates, we plot the
aggregated accuracy values for all BS-UE pairs grouped by
the lookback values in Fig. 9. The takeaway is that the per-
formance of the model varies across different users in the
network and that not all users would similarly benefit from
a proactive handoff.
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TABLE 2. Simulation settings.

FIGURE 7. Vector plot of α of the difference between impact of UE
positions compared to without UE positions for the distributed model.

FIGURE 8. Channel coherence cumulative distribution function (CDF).

FIGURE 9. The maximum, average, and minimum prediction accuracy of
the distributed proactive beam handoff algorithm with various lookbacks.

C. DISCUSSION
We start with discussing the performance disparity in both
the centralized and distributed approaches with no UE

coordinates in Fig. 6. This disparity is attributed to a wide
range of trajectory-dependent measurement values that sev-
eral UEs simultaneously take. In other words, a given point
on the trajectory can have several different measurements
depending on which serving beam they were on. This applies
to all points on the trajectory alike. The absence of the
C-RNTI drives the centralized deep learner (one learner
per BS) to learn a weighted average of measurements
which prevents accurate prediction of the objective-optimal
beam identifier. However, with the distributed approach, the
C-RNTI allows these trajectory-dependent measurements to
be uniquely attributed the UE reporting them, causing the
learner to learn unique measurements along the trajectory—a
task that an LSTM is designed to handle. A natural question
after this discussion is: How do these two algorithms compare
with the legacy algorithm where no proactive beam handoff
exists? To answer this, we remark that the legacy algorithm
is a per BS-UE algorithm. This is because each UE either
reports an RRC event or a periodic beam measurement inde-
pendently from other UEs, and the BS decides whether or
not a beam handoff should take place. Thus, the comparison
with the distributedmethod of our proposed algorithm ismore
suitable (which is also BS-UE pair). It is clear that the legacy
algorithm does not depend on the number of lookbacks since
it depends on the most recent measurement only. We observe
that the legacy approach underperforms the distributed pro-
posed approach. One reason why this happens is because the
knowledge of the trajectory and its underlying radio condi-
tions during the handoff enables the proactive approach to
assign a more robust beam (e.g., compared to a beam with
stronger SS-RSRP that is short-lived in the trajectory that the
legacy algorithm assigns).

Next, we study the impact of the knowledge of UE coor-
dinates in the proactive beam handoff. We do this through
studying the impact of lookback on the zero-one score as
shown in Fig. 7. Smaller sequences could drive LSTMs
towards over-triggering their forget gates, which deletes the
information in the self-recurrent memory BSs. However,
as the number of sequences grown larger, we observe two
important behaviors which can be mapped to two different
regimes:

1) Short lookback regime: any number of lookbacks
below 7 (but greater than 1) radio frames.

2) Long lookback regime: any number of lookbacks
greater than 7 radio frames.
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An important question can be asked here: What is the
significance of such a breakdown? To answer this ques-
tion, we observe that the win-loss score for the distributed
approach using the UE coordinates versus the approach not
using them is equal to 0 after ℓ = 7. This is because
of the capability of LSTM to learn long sequences. As a
result, the knowledge of UE coordinates is no longer rele-
vant since the deep learner can implicitly learn them with
high accuracy through the beams and the time-based tra-
jectory. At ℓ = 7, we have a total of n = 2(7 +

1 + 1) = 18 learning features for D. We cannot extrap-
olate ℓ indefinitely as ℓ cannot exceed the beam coher-
ence time (3). We show the coherence time for the UEs in
Fig. 8, where only 1.2% of the samples represent coher-
ence times greater than 7 radio frames. This is expected for
high-mobility UEs.

Finally, we notice that not all UEs benefit from the proac-
tive beam handoff equally. Fig. 9 shows that while some UEs
have an accuracy consistently above 0.9 for any lookback
value, there are someUEs that do not enjoy that. This depends
on the proximity of these UEs to their serving BS and the
uniqueness of the trajectories they follow. Based on the Man-
hattan grid in Fig. 4, we compute that the inter-site distance
can be as short as 100 m and as long as 460 m. If trajectories
have small number of overlaps, then LSTMs can learn the
trajectory and the optimal beams on its path. However, if UEs
are on trajectories that overlap with other trajectories, such
as turns, then undesired handoff effects such as ping-pong
could cause conflicting data to be added to the dataset. This
would cause the LSTMs to fail in learning the optimal beams.
If beams are equally likely to serve UEs, then the lower
bound of accuracy is 0.125, which is the reciprocal of the
number of beams 8, assuming equally likely occurrence of
beams.

VII. CONCLUSION
In this paper, we demonstrated that proactive beam handoff
is possible using deep learners with deep learners created per
BS-UE pair residing at the edge. We showed three different
approaches. The introduction of the UE coordinates help
enhance the performance of the deep learner towards the
proactive beam handoff; however as the longer sequences are
presented to the deep learner, the need for the UE coordinates
becomes diminished. The use of intelligence in radio resource
management algorithms help reduce the dependency on the
UEs therefore preserving their battery life and reducing their
temperature, which helps combat shot noise—a major issue
in mmWave communications.
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